Given the array nums, for each nums[i] find out how many numbers in the array are smaller than it. That is, for each nums[i] you have to count the number of valid j's such that j != iandnums[j] < nums[i].

Return the answer in an array.

 

Example 1:

Input:

 nums = [8,1,2,2,3]

Output:

 [4,0,1,1,3]

Explanation:

 
For nums[0]=8 there exist four smaller numbers than it (1, 2, 2 and 3). 
For nums[1]=1 does not exist any smaller number than it.
For nums[2]=2 there exist one smaller number than it (1). 
For nums[3]=2 there exist one smaller number than it (1). 
For nums[4]=3 there exist three smaller numbers than it (1, 2 and 2).

Example 2:

Input:

 nums = [6,5,4,8]

Output:

 [2,1,0,3]

Example 3:

Input:

 nums = [7,7,7,7]

Output:

 [0,0,0,0]

Constraints:

  • 2 <= nums.length <= 500
  • 0 <= nums[i] <= 100

 

使用桶排序,在nums的大小范围内可以达到常数乘N的复杂度。

class Solution {
public:
    vector<int> smallerNumbersThanCurrent(vector<int>& nums) {
        int a[101] = {0};
        vector<int> b;
        for( auto num : nums ){
            a[num]++;
        }
        for( int i = 1 ; i < 101 ; i ++ ){
            a[i] = a[i] + a[i-1];
        }
        for( int i = 0 ; i < nums.size() ; i ++ ){
            if( nums[i] == 0 ) b.push_back(0);
            else    b.push_back(a[nums[i]-1]);
        }
        return b;
    }
};

优化1:使用桶排序而不使用暴力排序。

优化2:使用单个数组存储桶内容与前序内容。

 


0 条评论

发表评论

Avatar placeholder